THE AMAZING WORLD OF Effective Field Theory of Large Scale Structures & Redshift Space Distortions

Lucía Fonseca de la Bella

University of Sussex

"...to boldly go where no one has gone before..."
...why is this important?

Millenium simulation. Springe et al 2005
...we'll talk about

EFToLSS

RSD

UNIVERSE INFORMATION
EFTolSS—Effective Field Theory of Large Scale Structures

Carrasco, Hertzberg, Senatore 2012

- **Large Scale Structures**
 - Most relevant information.
 - Described by the density contrast of dark matter and the matter power spectrum, P.
 - Evolve almost linearly

\[
\delta = \frac{\Delta \rho}{\rho_0}
\]

PERTURBATION THEORY
Standard Perturbation ✗
- No good agreement with new generation of high precision observational data
- Perfect fluid
- UV divergences → **Unphysical** predictions

EFToLSS ✓
- Much better fit with observations.
- Viscosity, dissipation...
- UV divergences absorbed by **counterterms**!

- Fluid equations in k space

\[
\dot{\delta}_k + \Theta_k = - \int \frac{d^3 \vec{q} d^3 \vec{r}}{(2\pi)^6} (2\pi)^3 \delta(\vec{k} - \vec{q} - \vec{r}) \alpha(\vec{q}, \vec{r}) \Theta(\vec{q}) \delta(\vec{r})
\]

\[
\dot{\Theta}_k + 2H \Theta_k + \frac{3}{2} H^2 \Omega_M(z) \delta_k = - \frac{k^2}{a^2} [Z_\delta \delta_k + Z_\Theta \Theta_k] - \int \frac{d^3 \vec{q} d^3 \vec{r}}{(2\pi)^6} (2\pi)^3 \delta(\vec{k} - \vec{q} - \vec{r}) \beta(\vec{q}, \vec{r}) \Theta(\vec{q}) \Theta(\vec{r})
\]

Theta is the divergence of the velocity field, alpha and beta are kernels.
Kaiser 1987

- Learn about velocities.
- Additional counterterm (CT) contributions to the matter power spectrum involving velocity fields.
EFToLSS & RSD

Senatore, Zaldarriaga 2014

- Power spectrum
 \(< \delta^*(k, z) \delta(k', z) > = (2\pi)^3 \delta_D(\vec{k} + \vec{k}') P(k, z) \)
...1-loop corrections

- Solving equation for density contrast

- Analogously, for $P_{\delta\delta}$ and $P_{\nu\nu}$
...1-loop matter power spectrum in Redshift Space

\[
P_{r,\delta,\delta, ||1\text{-loop}}(k, \mu, t) = P_{\delta,\delta, ||1\text{-loop}}(k, t) + 2\mu^2 P_{\delta,\delta, ||1\text{-loop}}(k, t) \\
+ \mu^4 P_{H, H, ||1\text{-loop}}(k, t) + \left(\frac{k \mu}{aH} \right)^2 P_{\delta, [v^2], \text{tree}}(k, t) \\
- \mu^2 \left(\frac{k \mu}{aH} \right)^2 P_{\delta, [v^2], \text{tree}}(k, t) + \frac{1}{4} \left(\frac{k \mu}{aH} \right)^4 P_{[v^2], [v^2], \text{tree}}(k, t) \\
+ (1 + f \mu^2) \left(\frac{k \mu}{aH} \right)^2 P_{\delta, [v^2], \text{tree}}(k, t) + \frac{i}{3} (1 + f \mu^2) \left(\frac{k \mu}{aH} \right)^2 P_{\delta, [v^2], \text{tree}}(k, t) \\
- (1 + f \mu^2) \left[(c_1 + c_2) \mu^2 + (c_1 + c_3) \mu^4 \right] \left(\frac{k}{k_{NL}} \right)^2 P_{\delta, \delta, 11}(k, t),
\]
UV DIVERGENCES AND RENORMALISATION

<table>
<thead>
<tr>
<th></th>
<th>LOCAL</th>
<th>NON-LOCAL</th>
<th>EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANIFEST BY STRUCTURE</td>
<td>ANALYTIC</td>
<td>NON-ANALYTIC</td>
<td>TERMS</td>
</tr>
<tr>
<td></td>
<td>=</td>
<td>≠</td>
<td>COUNTERTERMS</td>
</tr>
<tr>
<td>CUTOFF PHYSICAL</td>
<td>DEPENDENT</td>
<td>INDEPENDENT</td>
<td>V</td>
</tr>
<tr>
<td>PREDICTED BY EFFECTIVE THEORY</td>
<td>X</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

- Local in wave number, \(k \).
- Analytic means polynomial in \(k^2 \).
- Non-analytic, log or fractional powers of \(k^2 \).
Example of loop integrals in momentum space found in P_{13}

\[
I_{\alpha\alpha}(\Lambda) = \int_0^\Lambda \frac{d^3q}{(2\pi)^3} \mathcal{P}_R(q) \alpha(k, -q) \alpha(k - q, q)
\]

\[
= \int_0^{k_*} \frac{d^3q}{(2\pi)^3} \mathcal{P}_R(q) \alpha(k', -q) \alpha(k' - q, q) + \int_{k_*}^\Lambda \frac{d^3q}{(2\pi)^3} \mathcal{P}_R(q) \alpha(k, -q) \alpha(k - q, q)
\]

\[
= a_1(\Lambda) \cdot k^2 + b_1 \cdot k^3 + O(k^4).
\]

- Fixed by renormalisation
- Analytic behaviour, UV sensitive
- Low-energy
- Non-analytic

Fit cubic polynomial

COUNTERTERMS
Repeat analysis for $P_{\delta / \pi^{1\text{loop}}} (k, t)$, $P_{\delta / \pi^{1\text{loop}}} (k, t)$ and rest of counterterms
CONCLUSIONS

• The Universe is treated as a fluid. Most of the relevant information in Cosmology is found at large scales.

• At large scales, galaxies are point-like objects. There exist voids, filaments, clusters of galaxies...

• We want to study the backreaction from small scales and the so-called Redshift Space Distortion effect on large scale structures.

• Simulations are very expensive. We would need to run several simulations with different initial conditions.

• Effective Field Theory of Large Scale Structures is a powerful tool
 - This framework solves those theoretical issues present in Standard perturbation theory.
 - Some parameters need to be included in the analytical prediction and need to be measured by matching to numerical data → Renormalisation.
 - It agrees much better with new high precision observational datasets.
& PROSPECTS

- To obtain the renormalisation for the 1 loop matter power spectrum in Redshift Space.
- Compare with observations and N-body simulations.
- To apply this tool to the analysis of the screening mechanism in theories of Modified Gravity.
...1-loop $P_{\delta \delta}$ renormalisation

- $P_{\delta \delta \mid \text{1-loop}} = P_{11} + P_{13} + P_{CT}$
 - Tree level \Rightarrow UV-div

- Low-k behaviour (analytic terms) \Rightarrow Taylor expansion loop integrals
 \[P_{13}(k, z) \approx P_{11}(k, z) k^2 h(z) \int_0^\Lambda \frac{d^dq}{2\pi^2} \mathcal{P}_R(q) \]

Therefore,

\[P_{\delta \delta \mid \text{1-loop}} = P_{11} \left(1 + c_s^2 h(z) k^2 \right) \]

Renormalisation parameter

- Fixed observationally or by simulations
 - Cutoff dependence eliminated by CT in the UV limit (same k & z dependence up to a constant)

University of Sussex LFdlB 15
Stochastic term

RANDOM FORCES
- Small-scale gravitational interactions (galaxy collisions)
- Friction between the particles of the fluid (galaxies), viscosity and other corrections.

THERMAL FLUCTUATIONS
- Fluctuations in the density contrast.
- Stochastic term appears in the effective stress-energy tensor.

Source of
- Diffusion/dissipation
- Gravitational energy is turned into heat due to the friction.

Effect from
- Random noise
- The fluid is heated up and gravitational contributions appear.

\[|q_1| < |q_2| > k_{<\{0,1\}} \]